FULL PAPER

Rhodium(II) Acetate-Catalyzed Reaction of 2-Amino-4,5-dihydro-3-furancarbonitriles with Dialkyl Diazomalonates

Kenji Yamagata, Fumi Okabe, and Motoyoshi Yamazaki*
Fukuoka/Japan, Faculty of Pharmaceutical Sciences, Fukuoka University

Received June 23th, 1999
Keywords: Diazo compounds, Rhodium, Insertions, Dialkyl propanedioates, Furancarbonitriles

Abstract

Amino-4,5-dihydro-3-furancarbonitriles 3 react with dialkyl diazomalonates in the presence of rhodium(II) acetate to yield dialkyl (5-amino-4-cyano-2,3-di-

hydro-3-furanyl)propanedioates 4 . Dehydrogenation of 4 with DDQ provided dialkyl (5-amino-4-cyano-3-furanyl)propanedioates 5.

In the preceding paper, we showed that 2 -amino-4,5-dihydro-3-furancarbonitriles react with α-diazo- β-keto esters such as ethyl diazoacetoacetate and ethyl diazobenzoylacetate in the presence of rhodium(II) acetate to form ethyl 2 H -pyran-2-carboxylate [1]. In continuation of this study, we examined the reactions of 2-ami-no-4,5-dihydro-3-furancarbonitriles ($\mathbf{1}$ and $\mathbf{3}$) with dimethyl diazomalonate [2] and diethyl diazomalonate [3].

When a mixture of 2-amino-4,5-dihydro-3-furancarbonitrile 1 [4], dimethyl diazomalonate, and a catalytic amount of rhodium(II) acetate in 1,2-dichloroethane was refluxed for 1 h , an $\mathrm{N}-\mathrm{H}$ insertion product, dimethyl [(3-cyano-4,5-dihydro-2-furanyl)amino]propanedioate (2) was obtained in 75% yield, and the expected dimethyl 2 H -pyran-2,2-dicarboxylate could not be isolated. In order to confirm the structure of $\mathbf{2}$, hydrolysis of $\mathbf{2}$ with hydrochloric acid led to tetrahydro-2-oxo-3-furancarbonitrile which was identical with an authentic sample [5]. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 in deuteriochloroform indicates that $\mathbf{2}$ consists of approximately a 3:2 tautomeric mixture of the enamine \mathbf{A} and the imine B forms (Scheme 1).

Scheme 1

Subsequently, to prevent the $\mathrm{N}-\mathrm{H}$ insertion reaction, we investigated the reaction of 4,5-dihydro-2-pyrrolid-ino-, as well as of 2-piperidino- and 2-morpholino-3furancarbonitriles $\mathbf{3 a - h}[6,7]$ with dialkyl diazomalonates, and found an unexpected reaction.

When a mixture of 2-pyrrolidino-3-furancarbonitrile 3a, dimethyl diazomalonate, and rhodium(II) acetate in fluorobenzene was heated at $70^{\circ} \mathrm{C}$ under nitrogen, an

Scheme 2
allylic C-H insertion product, dimethyl (4-cyano-2,3-dihydro-5-pyrrolidino-furan-3-yl)propanedioate 4a was obtained in 41% yield (Scheme 2).

Compound 4a has the molecular composition $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$, and its IR, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR spectra are consistent with the proposed structure $\mathbf{4 a}$. The analogous allylic $\mathrm{C}-\mathrm{H}$ insertion was also observed by Wulfman et al. in their study dealing with the reactions of cyclohexenes and dimethoxycarbonylcarbenoid [8]. Compounds $\mathbf{3 b}-\mathbf{h}$ reacted with dimethyl diazomalonate under the same conditions to give the corresponding dimethyl furan-3-ylpropanedioates $\mathbf{4 b} \mathbf{- h}$ in fair yields. Similarly, the reaction of $\mathbf{3 f}-\mathbf{h}$ with diethyl diazomalonate afforded the corresponding diethyl 3-furanylpropanedioates $4 \mathbf{i}-\mathbf{k}$. Also their structures were supported by analytical and spectral data.

In order to confirm the structure of $\mathbf{4 a}$, dehydrogenation of $\mathbf{4 a}$ with DDQ led to dimethyl 3-furanylpropanedioate 5a, which was identical with an authentic sample prepared by the following method: Chloroacetylation of 1-(cyanoacetyl)pyrrolidine [9] with chloroacetyl chloride in the presence of magnesium chloride and triethylamine gave 4-chloro-3-oxo-2-(pyrrolidinocarbonyl)butanenitrile 6 in 54% yield, and subsequent treatment with sodium hydride provided 4,5-dihydro-4-oxo-2-pyrrolidino-3-furancarbonitrile (7) in 66% yield. Finally, the desired 5a was prepared by the reaction of 7 with dimethyl malonate in the presence of titanium(IV) chloride/triethylamine utilising a modification of a procedure described in the literature [10] (Scheme 3).

Scheme 3
Subsequently, aromatization of $\mathbf{4 b}-\mathbf{k}$ with DDQ yielded the corresponding dialkyl (furan-3-yl)propanedioates $\mathbf{5 b} \mathbf{- k}$. The IR spectra of $\mathbf{5 a}-\mathbf{d}$ display the two bands of the conjugated ester carbonyl groups at $1680-$ 1690 and 1720-1730 cm^{-1}. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 a}-\mathbf{d}$ show a singlet at $\delta=5.50-5.20 \mathrm{ppm}(5 \mathbf{a}-\mathbf{c})$ or a quartet at $\delta=6.05 \mathrm{ppm}(\mathbf{5 d})$ corresponding to the two protons or one proton of the $2-\mathrm{H}$ of the furan ring. On
the other hand, in the IR spectra of $\mathbf{5 e - k}$, the two bands of the non-conjugated ester carbonyl groups (17251735 and $1740-1760 \mathrm{~cm}^{-1}$) shift to higher frequencies from 20 to $30 \mathrm{~cm}^{-1}$ than those of $\mathbf{5 a}-\mathbf{d}$. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 e}-\mathbf{k}$ reveal the signal of the malonate methine proton as a singlet at $\delta=4.48$ 4.83 ppm , and no the signal of a methine proton $(2-\mathrm{H})$ of the furan ring observed around $\delta=5.50-6.50 \mathrm{ppm}$. These spectral data suggest that $\mathbf{5 a}-\mathbf{d}$ are the $3(2 H)$ furanylidene structure \mathbf{C}, whereas those of $\mathbf{5 e}-\mathbf{k}$ are the furan-3-yl structure \mathbf{D}.

Experimental

All melting points are uncorrected. IR spectra were recorded with a Jasco A-302 instrument. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Hitachi R22 (90 MHz), Jeol JNM-GX-400 $(400 \mathrm{MHz})$, and Jeol JNM-A500 $(500 \mathrm{MHz})$ in CDCl_{3}, with TMS as internal standard, δ scale; coupling constants in Hz. Mass spectra were recorded with a Jeol JMS-D300, 70 eV .

Dimethyl (3-Cyano-4,5-dihydro-2-furanyl)aminopropanedioate 2

A mixture of $\mathbf{1}$ [4] ($1.10 \mathrm{~g}, 10 \mathrm{mmol}$), dimethyl diazomalonate [2] ($1.74 \mathrm{~g}, 11 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.05 \mathrm{~g})$ in $1,2-$ dichloroethane (20 ml) was refluxed for 1 h . The solvent was removed in vacuo, and the residue was chromatographed on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone (4:1) as eluent, to afford 2. Colorless prisms; m.p. $88-90^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $)$. - IR (KBr): $v / \mathrm{cm}^{-1}=2190(\mathrm{C} \equiv \mathrm{N}), 1750(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta / \mathrm{ppm}=2.50-2.70(\mathrm{~m}, 0.8 \mathrm{H}, 4-\mathrm{H}), 2.91(\mathrm{t}$, $J=10,1.2 \mathrm{H}, 4-\mathrm{H}), 3.78\left(\mathrm{~s}, 1.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.81\left(\mathrm{~s}, 1.3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.84\left(\mathrm{~s}, 3.4 \mathrm{H}, \mathrm{CH}_{3}\right), 3.92(\mathrm{t}, J=7.5,0.4 \mathrm{H}, 3-\mathrm{H}), 4.35-4.52$ $(\mathrm{m}, 0.8 \mathrm{H}, 5-\mathrm{H}), 4.44(\mathrm{t}, J=10,1.2 \mathrm{H}, 5-\mathrm{H}), 5.02(\mathrm{~d}, J=8.5$, $0.6 \mathrm{H}, \mathrm{NHCH}), 5.04(\mathrm{~s}, 0.4 \mathrm{H},=\mathrm{N}-\mathrm{CH}), 5.54(\mathrm{~d}, J=8.5,0.6 \mathrm{H}$, NHCH).
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5} \quad$ Calcd.: C 50.00 H 5.04 N 11.66 (240.2) Found: C 50.26 H 5.01 N 11.80.

Reactions of 2-Amino-4,5-dihydro-3-furancarbonitriles
3 with Dialkyl Diazomalonates (General Procedure)
Procedure A: A mixture of $\mathbf{3}$ (10 mmol), dimethyl diazomalonate ($1.74 \mathrm{~g}, 11 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.05 \mathrm{~g})$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ (20 ml) was heated at $70^{\circ} \mathrm{C}$ with stirring for 4 h under nitrogen. After removal of the solvent in vacuo, the residue was purified by column chromatography on alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Yield $\mathbf{4 a}(1.20 \mathrm{~g}, 41 \%)$, $\mathbf{4 b}(1.08 \mathrm{~g}, 35 \%), 4 \mathbf{c}$ $(1.30 \mathrm{~g}, 42 \%), 4 \mathbf{d}(1.19 \mathrm{~g}, 39 \%), 4 \mathrm{e}(1.16 \mathrm{~g}, 36 \%), 4 \mathrm{f}(1.51 \mathrm{~g}$, $41 \%), \mathbf{4 g}(1.42 \mathrm{~g}, 37 \%)$, and $\mathbf{4 h}(1.17 \mathrm{~g}, 30 \%)$.
Procedure B: From $3(10 \mathrm{mmol})$ and diethyl diazomalonate [3] ($2.79 \mathrm{~g}, 15 \mathrm{mmol}$) as described for Procedure A. Yield 4i ($0.93 \mathrm{~g}, 23 \%$), $\mathbf{4 j}(0.90 \mathrm{~g}, 22 \%)$, and $\mathbf{4 k}(1.19 \mathrm{~g}, 29 \%)$.
Dimethyl (4-Cyano-2,3-dihydro-5-pyrrolidino-furan-3yl)propanedioate 4a
From 4,5-dihydro-2-pyrrolidino-3-furancarbonitrile [6] ($1.64 \mathrm{~g}, 10 \mathrm{mmol}$). Colorless prisms; m.p. $125-126^{\circ} \mathrm{C}$ (diethyl ether). $-{ }^{13} \mathrm{C}$ NMR (125 MHz): 25.2, 42.9, 47.7, 49.9,
52.5, 52.7, 55.4, 73.6, 120.0, 165.0,168.0, 168.3. - MS (FAB) $\mathrm{m} / \mathrm{z}(\%): 295$ (54) $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
Dimethyl (4-Cyano-2,3-dihydro-5-piperidino-furan-3-yl)propanedioate $\mathbf{4 b}$
From 4,5-dihydro-2-piperidino-3-furancarbonitrile [7] $(1.78 \mathrm{~g}, 10 \mathrm{mmol})$. Colorless prisms; m.p. $99-100{ }^{\circ} \mathrm{C}$ (diethyl ether). $-{ }^{13} \mathrm{C}$ NMR (100 MHz): 24.0, 25.4, 43.1, 47.3, $50.5,52.5,52.7,55.0,72.5,120.1,166.0,168.0,168.2$ - MS (FAB) $\mathrm{m} / \mathrm{z}(\%): 309(53)\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
Dimethyl (4-Cyano-2,3-dihydro-5-morpholino-furan-3yl)propanedioate $\mathbf{4 c}$
From 4,5-dihydro-2-morpholino-3-furancarbonitrile [6] $(1.80 \mathrm{~g}, 10 \mathrm{mmol})$. Colorless prisms; m.p. $110-111^{\circ} \mathrm{C}$ (diethyl ether). ${ }^{13} \mathrm{C}$ NMR (100 MHz): 42.9, 46.1, 52.1,52.6, 54.9, 66.1, 72.9, 119.3, 166.0, 167.9, 168.1. - MS(EI) m / z (\%): $310(7)\left[\mathrm{M}^{+}\right]$.
Dimethyl (4-Cyano-2,3-dihydro-2-methyl-5-pyrrolidino-furan-3-yl)propanedioate $\mathbf{4 d}$
From 4,5-dihydro-5-methyl-2-pyrrolidino-3-furancarbonitrile [6] (1.78 g, 10 mmol$)$. Colorless columns; m.p. 99$100{ }^{\circ} \mathrm{C}$ (diethyl ether). $-{ }^{13} \mathrm{C}$ NMR (100 MHz): 21.2, 25.2, 47.6, 48.8, 49.6, 52.4, 52.6, 55.6, 82.3, 120.8, 164.0, 168.0, 168.3.

Dimethyl (4-Cyano-2,3-dihydro-2-methyl-5-morpholino-furan-3-yl)propanedioate $\mathbf{4 e}$
From 4,5-dihydro-5-methyl-2-morpholino-3-furancarbonitrile [6] ($1.94 \mathrm{~g}, 10 \mathrm{mmol})$. Colorless prisms; m.p. $117-118^{\circ} \mathrm{C}$ (diethyl ether). - ${ }^{13} \mathrm{C}$ NMR (100 MHz): 21.0, 46. 1, 49.5, 51.1, 52.5, 52.7, 55.1, 66.1, 81.6, 119.6, 165.0, 167.8, 168.1. - MS(EI) m / z (\%): 324 (30) [M $\left.{ }^{+}\right]$.

Dimethyl (4-Cyano-2,3-dihydro-2-phenyl-5-pyrrolidino-furan-3-yl)propanedioate $\mathbf{4 f}$
From 4,5-dihydro-5-phenyl-2-pyrrolidino-3-furancarbonitrile [6] ($2.40 \mathrm{~g}, 10 \mathrm{mmol}$). Colorless prisms; m.p. 178-179 ${ }^{\circ} \mathrm{C}$ (acetone). ${ }^{13} \mathrm{C}$ NMR (100 MHz): 25.2, 47.8, 49.4, 50.9, 52.5, $52.6,55.5,85.5,120.2,125.5,128.5,128.6,139.9,164.4$, 167.8, 168.2.

Dimethyl (4-Cyano-2,3-dihydro-2-phenyl-5-piperidino-furan-3-yl)propanedioate $\mathbf{4 g}$
From 4,5-dihydro-5-phenyl-2-piperidino-3-furancarbonitrile [7] ($2.54 \mathrm{~g}, 10 \mathrm{mmol}$). Colorless prisms; m.p. $101-102^{\circ} \mathrm{C}$ (diethyl ether). ${ }^{13} \mathrm{C}$ NMR (100 MHz): 24.0, 25.6, 47.5, 49.9, 51.1, 52.5, 52.6, 55.2, 84.3, 119.9, 125.3, 128.5, 128.6, 140.0, 165.3, 167.8, 168.1.

Dimethyl (4-Cyano-2,3-dihydro-5-morpholino-2-phenyl-furan-3-yl)propanedioate $\mathbf{4 h}$
From 4,5-dihydro-2-morpholino-5-phenyl-3-furancarbonitrile [6] ($2.56 \mathrm{~g}, 10 \mathrm{mmol}$). Colorless needles; m.p. $124-125^{\circ} \mathrm{C}$ (acetone/petroleum ether). - ${ }^{13} \mathrm{C}$ NMR (125 MHz): 46.3, 50.9 , 51.6, 52.6, 52.7, 55.0, 66.2, 84.8, 119.1, 125.4, 128.7, 128.8, 139.5, 165.4, 167.7, 168.0. - MS (EI) $m / z(\%): 386$ (32) [M $\left.{ }^{+}\right]$.

Diethyl (4-Cyano-2,3-dihydro-2-phenyl-5-pyrrolidino-furan-3-yl)propanedioate 4i
From 4,5-dihydro-5-phenyl-2-pyrrolidino-3-furancarbonitrile [6] ($2.40 \mathrm{~g}, 10 \mathrm{mmol}$). Colorless columns; m.p. $90^{\circ} \mathrm{C}$ (diethyl
ether/petroleum ether). - ${ }^{13} \mathrm{C}$ NMR (100 MHz): 13.9, 14.0, 25.3, 47.8, 49.5, 50.8, 55.6, 61.5, 61.7, 85.3, 120.3, 125.5, 128.4, 128.6, 140.1, 164.4, 167.6, 167.8.

Diethyl (4-Cyano-2,3-dihydro-2-phenyl-5-piperidino-furan-3-yl)propanedioate $\mathbf{4 j}$
From 4,5-dihydro-5-phenyl-2-piperidino-3-furancarbonitrile [7] ($2.54 \mathrm{~g}, 10 \mathrm{mmol}$). Colorless prisms; m.p. $77-78{ }^{\circ} \mathrm{C}$ (diethyl ether/petroleum ether). - ${ }^{13} \mathrm{C}$ NMR (100 MHz): 13.9, $14.0,24.0,25.6,47.4,50.1,51.0,55.3,61.5,61.7,84.2,120.0$, 125.4, 128.4, 128.6, 140.1, 165.3, 167.6, 167.8.

Diethyl (4-Cyano-2,3-dihydro-5-morpholino-2-phenyl-furan-3-yl)propanedioate $\mathbf{4 k}$
From 4,5-dihydro-2-morpholino-5-phenyl-3-furancarbonitrile [6] ($2.56 \mathrm{~g}, 10 \mathrm{mmol}$). Colorless prisms; m.p. $92-93{ }^{\circ} \mathrm{C}$ (diethyl ether/petroleum ether). - ${ }^{13} \mathrm{C}$ NMR (100 MHz): 13.9, $14.0,46.2,50.8,51.8,55.1,61.6,61.8,66.1,84.7,119.2,125.5$, 128.6, 139.7, 165.3, 167.4, 167.6.

Reactions of 4 with DDQ (General Procedure)

Procedure A: A mixture of $\mathbf{4 a - d}, \mathbf{f}-\mathbf{k}(3 \mathrm{mmol})$ and DDQ $(0.89 \mathrm{~g}, 3.9 \mathrm{mmol})$ in benzene (20 ml) was refluxed for 1 h . After the solvent had been removed under reduced pressure, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added to the residue. The mixture was filtered to remove the insoluble material, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Yield 5a $(0.52 \mathrm{~g}, 59 \%), 5 \mathbf{b}(0.52 \mathrm{~g}, 57 \%), 5 \mathbf{c}(0.34 \mathrm{~g}, 37 \%), 5 \mathbf{d}(0.20 \mathrm{~g}$, $22 \%), \mathbf{5 f}(0.54 \mathrm{~g}, 49 \%), \mathbf{5 g}(0.55 \mathrm{~g}, 48 \%), \mathbf{5 h}(0.54 \mathrm{~g}, 47 \%)$, $\mathbf{5 i}(0.62 \mathrm{~g}, 52 \%), 5 \mathbf{j}(0.56 \mathrm{~g}, 46 \%)$, and $\mathbf{5 k}(0.69 \mathrm{~g}, 56 \%)$.
Procedure B: From $4 \mathbf{e}(0.97 \mathrm{~g}, 3 \mathrm{mmol})$ and DDQ (0.82 g , $3.6 \mathrm{mmol})$ as described for Procedure A. Yield 5e (0.17 g , 18\%).
Dimethyl (4-Cyano-5-pyrrolidino-(2H)-furan-3-ylidene)propanedioate 5a
From 4a ($0.88 \mathrm{~g}, 3 \mathrm{mmol}$). Colorless prisms; m.p. 181$182{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether). - MS (FAB) $\mathrm{m} / \mathrm{z}(\%): 293$ (54) $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Dimethyl (4-Cyano-5-piperidino-(2H)-furan-3-ylidene)propanedioate 5b
From 4b ($0.92 \mathrm{~g}, 3 \mathrm{mmol}$). Colorless needles; m.p. 151$152{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether). - MS (FAB) $\mathrm{m} / \mathrm{z}(\%): 307$ (55) $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Dimethyl (4-Cyano-5-morpholino-(2H)-furan-3-ylidene)propanedioate 5c
From $4 \mathbf{c}(0.93 \mathrm{~g}, 3 \mathrm{mmol})$. Colorless prisms; m.p. $172-$ $173{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $)$. $\mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}(\%): 309$ (67) $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Dimethyl (4-Cyano-2-methyl-5-pyrrolidino-(2H)-furan-3ylidene)propanedioate $\mathbf{5 d}$
From 4d ($0.92 \mathrm{~g}, 3 \mathrm{mmol}$). Colorless prisms; m.p. 163$164{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $)$.
Dimethyl (4-Cyano-2-methyl-5-morpholino-furan-3-yl)propanedioate $5 \mathbf{e}$
From 4e. Colorless needles; m.p. $58-59^{\circ} \mathrm{C}$ (diethyl ether/ petroleum ether).

Dimethyl (4-Cyano-2-phenyl-5-pyrrolidino-furan-3-yl)propanedioate $\mathbf{5 f}$
From $\mathbf{4 f}(1.11 \mathrm{~g}, 3 \mathrm{mmol})$. Colorless prisms; m.p. 169$170{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $)$.

Dimethyl (4-Cyano-2-phenyl-5-piperidino-furan-3-yl)propanedioate 5 g
From $\mathbf{4 g}$ ($1.15 \mathrm{~g}, 3 \mathrm{mmol}$). Colorless prisms; m.p. 145$146{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $)$.

Dimethyl (4-Cyano-2-methyl-5-morpholino-furan-3-yl)propanedioate $\mathbf{5 h}$
From 4h (1.16 g, 3 mmol). Colorless columns; m.p. 159$160{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $)$.

Table 1 Analytical and IR spectral data of $\mathbf{4 a}-\mathbf{k}, \mathbf{5 a}-\mathbf{k}$

	Formula	Analysis Calcd./Found			IR $v\left(\mathrm{~cm}^{-1}\right)$	
		C	H	N	$\mathrm{C} \equiv \mathrm{N}$	$\mathrm{C}=\mathrm{O}$
4b	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$	58.43	6.54	9.09	2170	1740
	(308.3)	58.46	6.64	9.11		
4c	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$	54.19	5.85	9.03	2170	1740
	$(310.3){ }^{\text {a }}$	54.30	5.97	9.05		1727 (sh)
4d	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$	58.43	6.54	9.09	2170	1745
	(308.3)	58.50	6.53	9.16		1727
4 e	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$	55.55	6.22	8.64	2170	1750
	(324.3)	55.69	6.25	8.67		1730
4 f	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$	64.85	5.99	7.65	2170	1750 (sh)
	(370.4)	64.94	6.02	7.62		1735
4 g	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$	65.61	6.29	7.29	2175	1740
	(384.4) ${ }^{2}$	65.75	6.43	7.39		
4h	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$	62.17	5.74	7.25	2180	1744
	(386.4)	62.30	5.81	7.32		1728
4i	$\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$	66.32	6.58	7.03	2195	1745
	(398.5)	66.51	6.74	7.16		1730
4 j	$\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$	67.02	6.84	6.79	2190	1750 (sh)
	(412.5)	66.95	6.67	6.74		1735
4k	$\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O} \mathrm{O}_{6}$	63.76	6.32	6.76	2180	1750 (sh)
	(414.5)	63.90	6.28	6.95		1730
5a	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$	57.53	5.52	9.58	2200	1720
	(292.3)	57.42	5.55	9.39		1690
5b	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$	58.82	5.92	9.15	2200	1725
	(306.3)	58.81	5.87	9.02		1685
5 c	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$	54.54	5.23	9.09	2200	1720
	(308.3)	54.59	5.30	8.87		1690
5d	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$	58.82	5.92	9.15	2205	1730
	(306.3)	58.80	5.86	9.08		1680
5 e	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$	55.90	5.63	8.69	2210	1760
	(322.3)	55.89	5.68	8.47		1735
5 f	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$	65.21	5.47	7.60	2190	1750 (sh)
	(368.4)	65.30	5.39	7.69		1725
5 g	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$	65.96	5.80	7.33	2200	1755
	(382.4)	65.95	5.78	7.30		1735 (sh)
5h	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$	62.49	5.24	7.29	2200	1750 (sh)
	(384.4)	62.27	5.23	7.22		1735
$5 i$	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$	66.65	6.10	7.07	2200	1740
	(396.4)	66.69	6.05	6.94		1735 (sh)
5j	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$	67.30	6.38	6.82	2205	1745 (sh)
	(410.5)	67.31	6.40	6.79		1735
5k	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$	64.07	5.87 5.85	6.79	2210	1745 (sh)
	(412.4)	64.08	5.85	6.69		1730

Table $2{ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{4 a}-\mathbf{k}, \mathbf{5 a} \mathbf{- k}$

```
    \({ }^{1} \mathrm{H}\) NMR \(\delta(\mathrm{ppm}), J(\mathrm{~Hz})\)
4a \(\quad 1.85-1.95\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolidine)], \(3.47-3.57\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolidine)], \(3.60\left(\mathrm{~d}, J=7.5,1 \mathrm{H}, \mathrm{CH}\right.\) ), \(3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)\), 3.79
    (s, \(3 \mathrm{H}, \mathrm{OCH}_{3}\) ), 3.83 (ddd, \(\left.J=4.5 / 7.5 / 8,1 \mathrm{H}, 3-\mathrm{H}\right), 4.38(\mathrm{dd}, J=4.5 / 8,1 \mathrm{H}, 2-\mathrm{H}), 4.52(\mathrm{t}, J=8,1 \mathrm{H}, 2-\mathrm{H})\)
4b \(\quad 1.55-1.65\left[\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.\) (piperidine) \(], 3.44-3.52\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (piperidine) ], \(3.61(\mathrm{~d}, J=6.5,1 \mathrm{H}, \mathrm{CH}), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76(\mathrm{~s}\),
    \(3 \mathrm{H}, \mathrm{OCH}_{3}\) ), \(3.80(\mathrm{ddd}, J=3 / 6.5 / 9.5,1 \mathrm{H}, 3-\mathrm{H}), 4.40(\mathrm{dd}, J=3 / 10,1 \mathrm{H}, 2-\mathrm{H}), 4.47(\mathrm{dd}, J=9.5 / 10,1 \mathrm{H}, 2-\mathrm{H})\)
        \(3.47-3.59\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine)], \(3.62\left(\mathrm{~d}, J=7.5,1 \mathrm{H}, \mathrm{CH}\right.\) ), \(3.67-3.72\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine) ], \(3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.\) ), 3.79
        ( \(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\) ), \(3.82(\mathrm{ddd}, J=4.5 / 7.5 / 9,1 \mathrm{H}, 3-\mathrm{H}), 4.42(\mathrm{dd}, J=4.5 / 10,1 \mathrm{H}, 2-\mathrm{H}), 4.50(\mathrm{dd}, J=9 / 10,1 \mathrm{H}, 2-\mathrm{H})\)
4d \(\quad 1.39\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH}_{3}\right.\) ), 1.85-1.95 [m, 4H, 2CH2 (pyrrolidine)], 3.38 (dd, \(J=3.5 / 8,1 \mathrm{H}, 3-\mathrm{H}\) ), \(3.45-3.55\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolid
    ine)], \(3.58(\mathrm{~d}, J=8,1 \mathrm{H}, \mathrm{CH}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.63(\mathrm{dq}, J=3.5 / 7,1 \mathrm{H}, 2-\mathrm{H})\)
\(4 \mathrm{e} \quad 1.39\left(\mathrm{~d}, J=6.5,3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.37(\mathrm{dd}, J=3.5 / 7.5,1 \mathrm{H}, 3-\mathrm{H}), 3.45-3.56\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine) ], \(3.60(\mathrm{~d}, J=7.5,1 \mathrm{H}, \mathrm{CH}\) ), \(3.65-\)
    \(3.72\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine) ], \(3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.67(\mathrm{dq}, J=3.5 / 6.5,1 \mathrm{H}, 2-\mathrm{H})\)
4f \(1.90-2.00\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolidine)], \(3.55-3.65\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolidine)], \(3.73\left(\mathrm{~s}, 3 \mathrm{H}, 0 \mathrm{OH}_{3}\right), 3.74(\mathrm{dd}, J=3 / 6.5,1 \mathrm{H}, 3-\mathrm{H})\),
    \(3.75(\mathrm{~d}, J=6.5,1 \mathrm{H}, \mathrm{CH}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.55(\mathrm{~d}, J=3,1 \mathrm{H}, 2-\mathrm{H}), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}\), aryl)
\(4 \mathrm{~g} \quad 1.60-1.70\left[\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.\) (piperidine) \(], 3.50-3.60\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (piperidine) \(], 3.71(\mathrm{dd}, J=2.5 / 7,1 \mathrm{H}, 3-\mathrm{H}), 3.74(\mathrm{~d}, J=7,1 \mathrm{H}, \mathrm{CH})\),
    \(3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.56(\mathrm{~d}, J=2.5,1 \mathrm{H}, 2-\mathrm{H}), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}\), aryl)
4h \(\quad 3.55-3.75\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}, 3-\mathrm{H}, 4 \mathrm{CH}_{2}\right.\) (morpholine) ], \(3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.60(\mathrm{~d}, \mathrm{~J}=2,1 \mathrm{H}, 2-\mathrm{H}), 7.30-7.40(\mathrm{~m}\),
    5 H , aryl)
4i \(\quad 1.24\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, 1.90-2.00\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\right.\) (pyrrolidine) ], \(3.50-3.65\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\)
    (pyrrolidine)], \(3.71(\mathrm{~d}, J=7.5,1 \mathrm{H}, \mathrm{CH}), 3.75(\mathrm{dd}, J=2.5 / 7.5,1 \mathrm{H}, 3-\mathrm{H}), 4.21\left(\mathrm{q}, J=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.23\left(\mathrm{q}, J=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)\),
    5.63 (d, \(J=2.5,1 \mathrm{H}, 2-\mathrm{H}), 7.30-7.40(\mathrm{~s}, 5 \mathrm{H}\), aryl)
4j \(\quad 1.24\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.60-1.70\left[\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.\) (piperidine ) ], \(3.50-3.60\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\)
    (piperidine )], \(3.71(\mathrm{~d}, J=2,2 \mathrm{H}, \mathrm{CH}, 3-\mathrm{H}), 4.22\left(\mathrm{q}, J=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.24\left(\mathrm{q}, J=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.62(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.30-\)
    7.40 (m, 5H, aryl)
4k \(\quad 1.24\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.65-3.80\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}, 3-\mathrm{H}, 4 \mathrm{CH}_{2}\right.\) (morpholine)], \(4.21(\mathrm{q}, J=7,2 \mathrm{H}\),
    \(\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.24\left(\mathrm{q}, J=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.65(\mathrm{~d}, J=2,1 \mathrm{H}, 2-\mathrm{H}), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}\), aryl)
5a \(\quad 1.90-2.10\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolidine) \(], 3.55-3.65\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.\) (pyrrolidine)], 3.71(s, \(3 \mathrm{H}, \mathrm{OCH}_{3}\) ), \(3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90-4.00\)
    [m, 2H, CH 2 (pyrrolidine)] \(5.52(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}\) )
5b \(1.70-1.80\left[\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.\) (piperidine) \(], 3.65-3.90\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (piperidine)], \(3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.50(\mathrm{~s}, 2 \mathrm{H}\),
    2-H)
5c \(\quad 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80-3.90\left[\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right.\) (morpholine) \(], 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.52(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H})\)
5d \(1.55\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.90-2.10\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolidine) \(], 3.50-3.60\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.\) (pyrrolidine) ], \(3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84(\mathrm{~s}\),
    \(3 \mathrm{H}, \mathrm{OCH}_{3}\) ), 3.85-3.95 [m, 2H, CH (pyrrolidine) \(], 6.05(\mathrm{q}, J=7,1 \mathrm{H}, 2-\mathrm{H})\)
5e \(2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.50-3.60\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine) ], \(3.80-3.90\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine) \(], 3.80\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.48(\mathrm{~s}, 1 \mathrm{H}\), CH)
5f \(1.95-2.05\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolidine)], \(3.65-3.75\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolidine)], 3.81 (s, \(6 \mathrm{H}, 2 \mathrm{OCH}_{3}\) ), \(4.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\) ), \(7.25-7.45\) (m, 5H, aryl)
5g \(1.60-1.75\left[\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.\) (piperidine)], \(3.60-3.65\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (piperidine)], \(3.80\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.30-7.50(\mathrm{~m}\), 5 H , aryl)
5h \(\quad 3.60-3.70\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine) ], \(3.80-3.85\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine) \(], 3.81\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.30-7.50\) (m, 5H, aryl)
\(5 i \quad 1.30\left(\mathrm{t}, J=7,6 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.\) ), 1.95-2.05 [m, 4H,2CH (pyrrolidine)], \(3.65-3.75\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (pyrrolidine)], \(4.265(\mathrm{q}, J=7,2 \mathrm{H}\), \(\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.27\left(\mathrm{q}, J=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.25-7.50(\mathrm{~m}, 5 \mathrm{H}\), aryl)
\(5 \mathrm{j} \quad 1.29\left(\mathrm{t}, J=7,6 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.\) ), \(1.60-1.75\left[\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.\) (piperidine) ], \(3.60-3.65\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (piperidine)], 4.25 (q, \(J=7,2 \mathrm{H}\), \(\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.255\left(\mathrm{q}, J=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.30-7.50(\mathrm{~m}, 5 \mathrm{H}\), aryl)
5k \(\quad 1.30\left(\mathrm{t}, J=7,6 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.63-3.67\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine) ], \(3.80-3.84\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.\) (morpholine) \(], 4.26(\mathrm{q}, J=7,2 \mathrm{H}\), \(\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.265\left(\mathrm{q}, J=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.31-7.50(\mathrm{~m}, 5 \mathrm{H}\), aryl)
```


4-Chloro-3-oxo-2-(pyrrolidinocarbonyl)butanenitrile 6

A mixture of 1-(cyanoacetyl)pyrrolidine [9] ($4.14 \mathrm{~g}, 30 \mathrm{mmol}$), magnesium chloride ($2.85 \mathrm{~g}, 30 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(6.06 \mathrm{~g}$, 60 mmol) in acetonitrile (30 ml) was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and then chloroacetyl chloride ($3.39 \mathrm{~g}, 30 \mathrm{mmol}$) was added. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temp. for 20 h . The solvent was removed, and $5 \% \mathrm{HCl}$ (20 ml) was added to the residue. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with satd. NaCl solution and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was chromatographed on silica gel. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded $6(3.48 \mathrm{~g}, 54 \%$ crude) as pale yellow oil. The product 6 was employed for the successive reaction without further purification.

4,5-Dihydro-4-oxo-2-pyrrolidino-3-furancarbonitrile 7

To an ice-cooled and stirred solution of $\mathbf{6}$ in DME (20 ml) was added $60 \% \mathrm{NaH}(0.70 \mathrm{~g}, 18 \mathrm{mmol})$. Stirring was continued at room temp. until the evolution of gas ceased, and then the mixture was refluxed for 2 h . After removal of the DME in vacuo, $\mathrm{H}_{2} \mathrm{O}$ was added to the residue. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give 7 ($1.85 \mathrm{~g}, 66 \%$). Colorless columns; m.p. $116-117^{\circ} \mathrm{C}$ (acetone/petroleum ether). - IR (KBr): $v / \mathrm{cm}^{-1}=$ $2200(\mathrm{C} \equiv \mathrm{N}), 1690(\mathrm{C}=\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR (90 MHz): $\delta / \mathrm{ppm}=$ $1.80-2.20\left[\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.$ (pyrrolidine)], $3.50-4.00[\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2}$ (pyrrolidine)], $4.59(\mathrm{~s}, 2 \mathrm{H}, 5-\mathrm{H})$.
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
Calcd.: C 60.66 H 5.66 N 15.72
(178.2) Found: C 60.66 H 5.70 N 15.67.

Reaction of 7 with Dimethyl Malonate

To an ice-cooled and stirred solution of $7(1.78 \mathrm{~g}, 10 \mathrm{mmol})$ and dimethyl malonate $(1.98 \mathrm{~g}, 15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ $\mathrm{TiCl}_{4}(3.87 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.02 \mathrm{~g}$, $20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ were successively added. The mixture was stirred at room temp. overnight, and then $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{ml})$ was added. The organic layer was separated and washed with $\mathrm{H}_{2} \mathrm{O}$, dried with $\mathrm{Na}_{2} \mathrm{SO}$, and concentrated. The solvent was evaporated, and the residue was chromatographed on alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford $\mathbf{5 a}(1.10 \mathrm{~g}, 38 \%)$, which was identical with a sample prepared from $4 \mathbf{a}$ and DDQ on the basis of a mixed melting point determination and a comparison of the IR spectra.

References

[1] K. Yamagata, K. Akizuki, M. Yamazaki, J. Prakt. Chem. 1998, 340, 627
[2] B. W. Peace, F. Carman, D. S. Wulfman, Synthesis 1971, 658
[3] M. Regitz, Chem. Ber. 1966, 99, 3128
[4] T. Matsuda, K. Yamagata, Y. Tomioka, M. Yamazaki, Chem. Pharm. Bull. 1985, 33, 937
[5] S. Morgenlie, Acta. Chem. Scand. 1970, 24, 365
[6] K. Yamagata, M. Takaki, M. Yamazaki, Liebigs Ann. Chem. 1992, 1109
[7] K. Yamagata, K. Akizuki, M. Yamazaki, J. Prakt. Chem. 1998, 340, 51
[8] a) D. S. Wulfman, R. S.McDaniel Jr, B. W. Peace, Tetrahedron 1976, 32, 1241; b) D.S. Wulfman, B.G. McGibboney, E.K.Steffen, N.V. Thinh, R.S.McDaniel Jr, B.W.Peace, Tetrahedron 1976, 32, 1257
[9] H. F. Schwartz, L.F.Worrell, J. N. Delgado, J. Pharm Sci. 1967, 56, 80
[10] W. Lehnert, Tetrahedron 1973, 29, 635

Address for correspondence:
Prof. Dr. M. Yamazaki
Faculty of Pharmaceutical Sciences
Fukuoka University
8-19-1 Nanakuma, Jonanku
Fukuoka 814-0180, Japan
Fax: +81-92-863-0389
e-Mail: prof-my@fukuoka-u.ac.jp

